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Abstract. Implications of a formal context (G, M, I) have a minimal
implication basis, called Duquenne-Guigues basis or stem base. It is
shown that the problem of deciding whether a set of attributes is a
premise of the stem base is in coNP and determining the size of the stem
base is polynomially Turing equivalent to a #P-complete problem.

1 Introduction

Since the introduction of the Duquenne-Guigues basis of implications [4, 5] (called
also the stem base in [2]), a long standing problem was that concerning the upper
bound of its size: whether the size of the basis can be exponential in the size of
the input. In [6] we proposed a general form of a context where the number of
implications in the basis is exponential in the size of the context. Moreover, in [6]
it was shown that the problem of counting pseudo-intents, which serve premises
for the implications in the basis, is a #P-hard problem.

A closely related question is that posed by Bernhard Ganter at ICFCA 2005:
what is the complexity class of the problem of determining if an attribute set
is a pseudo-intent? There was also a conjecture that this problem is PSPACE-
complete. This paper provides a proof that this problem is just in coNP. Then,
the polynomial Turing equivalence to a #P-complete counting problem is a direct
consequence of this fact and the previous #P-hardness result from [6].

2 Definitions and Main Results

We assume that the reader is familiar with basic definitions and notation of
formal concept analysis [2]. Recall that, given a context (G, M, I) with derivation
operator (·)′ and B, D ⊆ M , an implication D → B holds if D′ ⊆ B′.

A minimal (in the number of implications) subset of implications from which
all other implications of a context follow semantically [2] was characterized in
[4, 5]. This subset is called Duquenne-Guigues basis or stem base in the literature.
The premises of implications of the stem base can be given by pseudo-intents
[1, 2]: a set P ⊆ M is a pseudo-intent if P �= P ′′ and Q′′ � P for every pseudo-
intent Q � P .

The notions of quasi-closed and pseudo-closed sets used below have first been
formulated in [4] under the name of saturated gaps (noeuds de non-redondance
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in [5]) and minimal saturated gaps (noeuds minimaux in [5]), respectively. The
terms quasi-closed and pseudo-closed have been introduced in [1]. The corre-
sponding definitions in [5] and [1] are different but equivalent (except that sat-
urated gaps are not closed by definition). We use notation from [1].

A set Q ⊆ M is quasi-closed if for any R ⊆ Q one has R′′ ⊆ Q or R′′ = Q′′.
For example, closed sets are quasi-closed.

Below we will use the following properties of quasi-closed sets:

Proposition 1. [1] A set Q ⊆ M is quasi-closed iff Q ∩ C is closed for every
closed set C with Q �⊆ C. Intersection of quasi-closed sets is quasi-closed.

A set P is called pseudo-closed if it is quasi-closed, not closed, and for any quasi-
closed set Q � P one has Q′′ � P . It can be shown that a set P is pseudo-closed
if and only if P �= P ′′ and Q′′ � P for every pseudo-closed Q � P . Hence, a
pseudo-closed subset of M is a pseudo-intent and vice versa, and we use these
terms interchangeably. By the above, a pseudo-intent is a minimal quasi-closed
set in its closure class, i.e., among quasi-closed sets with the same closure. In
some closure classes there can be several minimal quasi-closed elements.

Proposition 2. A set S is quasi-closed iff for any object g ∈ G either S ∩ {g}′
is closed or S ∩ {g}′ = S.

Proof. By Proposition 1, to test quasi-closedness of S ⊆ M , one should verify
that for all R ⊆ M the set S ∩ R′′ is closed or coincides with S. Any closed set
of attributes R′′ can be represented as the intersection of some object intents:

R′′ =
⋂

g∈R′

{g}′ and S ∩ R′′ =
⋂

g∈R′

(S ∩ {g}′).

If S ∩ {g}′ = S for all g ∈ R′, then S ∩ R′′ = S. Thus, if intersection of S with
each object intent is either closed or coincides with S, then this also holds for
the intersection of S with any R′′. If S ∩ {g}′ is not closed and S ∩ {g}′ �= S for
some g, then this suffices to say that S is not quasi-closed. ��

Corollary 1. Testing whether S ⊆ M is quasi-closed in the context (G, M, I)
may be performed in O(|G|2 · |M |) time.

Proof. By Proposition 2, to test whether S is quasi-closed, it suffices to compute
intersection of S with intents of all objects from G and check whether these
intersections are closed or equal to S. Testing closedness of intersection of S
with an object intent takes O(|G| · |M |) time, testing this for all |G| objects
takes O(|G|2 · |M |) time. ��

Proposition 3. The following problem is in NP:

INSTANCE: A context (G, M, I) and a set S ⊆ M
QUESTION: Is S not a pseudo-intent of (G, M, I)?
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Proof. First, we test if S is closed. If it is, then it is not pseudo-closed and the
answer to our problem is positive. Otherwise, note that a nonclosed set S is
pseudo-closed if and only if there is no pseudo-closed set P � S with P ′′ = S′′.
However, such P exists if and only if there is a quasi-closed set Q � S with
the same property. Therefore, we nondeterministically obtain for S such a set Q
and verify if Q is indeed a quasi-closed subset of S such that Q′′ = S′′. By the
corollary of Proposition 2, this test can be done in polynomial time. ��
Corollary 2. The following problem is in coNP:

INSTANCE: A context (G, M, I) and a set S ⊆ M
QUESTION: Is S a pseudo-intent of (G, M, I)?

Consider the problem of counting the number of all pseudo-intents. #P [7] is
the class of problems of the form “compute f(x)”, where f is the number of
accepting paths of an NP machine [3]. A problem is #P-hard if any problem
in #P can be reduced by Turing to it in polynomial time. A problem is #P-
complete if it is in #P and is #P-hard. #P-completeness of a problem in #P,
can be proved by reducing a #P-complete problem to it in polynomial time.

Since the problem of checking whether a set is nonpseudo-closed is in NP, the
problem of counting such sets is in #P. Since the number of pseudo-intents is
2|M|−k if the number of sets that are not pseudo-intents is k, the #P-hardness of
the problem of counting pseudo-intents [6] implies #P-hardness of the problem
of counitng the sets that are not pseudo-intents. Hence, we proved

Proposition 4. The following problem is #P-complete:

INSTANCE: A context (G, M, I)
QUESTION: What is the number of sets that are not pseudo-intents?

Hence, the problem of counting pseudo-intents is polynomially Turing equivalent
to a #P-complete problem. It remains still open if deciding that a set is a pseudo-
intent can be done in polynomial time.
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